Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Internet Interv ; 26: 100461, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1446738

ABSTRACT

BACKGROUND: The COVID-19 pandemic has had a detrimental effect on the mental health of older adults living in nursing homes. Very few studies have examined the effects of Internet-based Cognitive Behavioral Therapy (ICBT) on older adults living in nursing homes during the pandemic. We conducted a feasibility study using a single-group design, to explore the effectiveness of ICBT on psychological distress in 137 older adults (without cognitive impairment) from 8 nursing homes in 4 southeast cities in China, between January and March 2020. METHODS: Symptoms of depression, anxiety, general psychological distress, and functional disability were measured at baseline, post-treatment (5 weeks) and at a 1-month follow-up. Mixed-effects model was used to assess the effects of ICBT. RESULTS: Statistically significant changes with large effect sizes were observed from pre- to post-treatment on the PHQ-9 (p < .001, Cohen's d = 1.74), GAD-7 (p < .001, d = 1.71), GDS (p < .001, d = 1.30), K-10 (p < .001, d = 1.93), and SDS (p < .001, d = 2.03). Furthermore, improvements in treatment outcomes were sustained at 1-month follow-up, and high levels of adherence and satisfaction were indicated. CONCLUSION: ICBT was effective in reducing psychological distress in older adults without cognitive impairments living in nursing homes during the COVID-19 pandemic. Thus, it could be applied in improving the mental health of this vulnerable group during the pandemic.

2.
Plant Sci ; 296:110498-110498, 2020.
Article in English | MEDLINE | ID: covidwho-620815

ABSTRACT

NAC protein is a large plant specific transcription factor family, which plays important roles in the response to abiotic stresses. However, the regulation mechanism of most NAC proteins in drought stress remains to be further uncovered. In this study, we elucidated the molecular functions of a NAC protein, GhirNAC2, in response to drought stress in cotton. GhirNAC2 was greatly induced by drought and phytohormone abscisic acid (ABA). Subcellular localization demonstrated that GhirNAC2 was located in the nucleus. Co-suppression of GhirNAC2 in cotton led to larger stomata aperture, elevated water loss and finally reduced transgenic plants tolerance to drought stress. Furthermore, the endogenous ABA content was significantly lower in GhirNAC2-suppressed transgenic plant leaves compared to wild type. in vivo and in vitro studies showed that GhirNAC2 directly binds to the promoter of GhNCED3a/3c, key genes in ABA biosynthesis, which were both down-regulated in GhirNAC2-suppressed transgenic lines. Transient silencing of GhNCED3a/3c also significantly reduced the resistance to drought stress in cotton plants. However, ectopic expression of GhirNAC2 in tobacco significantly enhanced seed germination, root growth and plant survival under drought stress. Taken together, GhirNAC2 plays a positive role in cotton drought tolerance, which functions by modulating ABA biosynthesis and stomata closure via regulating GhNCED3a/3c expression.

SELECTION OF CITATIONS
SEARCH DETAIL